Главная Журналы TWl, TW2 - температуры границ Т и [см. (8.5)]. 8.3.4. Листинг подпрограммы ADAPT с сссссссссссссссссссссссссссссссссссссссссссссссссссссссс SUBROUTINE ADAPT с------ с--EXAMPLE 3 - STEADY CONDUCTION IN IRREGULAR GEOMETRY С----- $ INCLUDE: COMMON DIMENSION T(NI,NJ) EQUIVALENCE (F(1,1,1),T(1,1)) ENTRY GRID HEADER=STEADY CONDUCTION IN IRREGULAR GEOMETRY PRINTF=PRINT3 PL0TF=PL0T3 CALL INTA5(NZX,4,NCVX(1),2,NCVX(2),4,NCVX(3),2, 1 NCVX(4),4) CALL DATA4(XZONE(1),0.5,XZONE(2),0.9,XZONE(3),0.6, 1 XZ0NE(4),1.) CALL INTA6(NZY,5,NCVY(1),2,NCVY(2),2,NCVY(3),2, 1 NCVY(4),4,NCVY (5),2) CALL DATA5(YZONE(1),0.4,YZONE(2),0.4,YZONE(3),0.6, 1 YZONE(4),1.0,lYZONE(5),0.6) CALL ZGRID RETURN Q + + + + - + + + - + - + ENTRY BEGIN TITLE(1)= TEMPERATURE CALL INTA4(KSOLVE(1),1,KPRINT(1),1,KPL0T(1),1,LAST,10) CALL DATA6(TW1,400.,TW2,500.,TINF,300.,AQ,50., 1 BQ,2.E-8,AK,12.) DO 100 J=1,M1 DO 100 1=1,LI T(I,J)=TW2 100 CONTINUE RETURN ENTRY OUTPUT HTFLY=0. DO 200 1=2,L2 HTFLY=HTFLY+XCV(I)*FLUXJl(I,1) 200 CONTINUE DO 210 IUNIT=IU1,IU2 IF(ITER.EQ.0) WRITE(lUNIT,220) 220 F0RMAT(2X, ITER,3X, •T(2,12) ,3X, T(5,4) , 1 3X,T(10,12),4X,HEAT FLOW (BOTTOM FACE)) WRITE(lUNIT,2 30) ITER,T(2,12),T(5,4),T(10,12),HTFLY 230 FORMAT(2X,12,2X,1P3E10.2,9X,1PE11.3) 210 CONTINUE IF(ITER.EQ.LAST) THEH CALL PRINT BEFORE CALLING PLOT COME HERE TO FILL IBLOCK(I,J) DO 24 0 J=2,M2 UO 240 1=2,L2 IF(X(I).GI.0.5.AND.X 1 GT.0,8.AND.Y iJ) .LT IF(X(I) .GT.2. .AND.YIJ) .GT.0.4. .ID.Y(J) .LT. 1 IBLOCK (I, J) =-1 240 CONTINUE CALL PLOT (I).LT.1.4.AND.Y(J). .2.4) IBLOCK(I,J)=1 1.4) ENDIF RETURN ENTRY PHI DO 300 J2,M2 DO 300 1=2,L2 GAt4(I, J)=AK IF(X(I) .GT.0.5.AND.X(I) .LT.1.4.AND.Y(J) . GT.0 . 8 . 1 AND.Y(J).LT.2.4) GAM(I,J)=1.E12 IF(X(1).GT.2.0.AND.Y(J).GT.0.4.AND.Y(J).LT.1.4) 1 GAM(I,J)=1.E12 300 CONTINUE SC(4,6)=BIG*TW1 SP(4,6)=-BIG COME HERE TO SPECIFY BOUNDARY CONDITIONS DO 310 1=2,L2 KBCMl(I)-2 KBCJlfl)=2 FLXCJl (I) =AQ*TINF+BQ*TINF**4 + 3 .*BQ*T(I,1)**4 FLXPJl(I)=-(AQ+4.*BQ*T(I,1)**3) 310 CONTINUE DO 320 J=2,M2 KBCIl(J)=2 320 CONTINUE RETURN END ccccccccccccccccccccccccccccccccccccccccccccccccccc 8.3.5. Результаты расчетов RESULTS OF CONDUCT FOR CARTESIAN COORDINATE SYSTEM STEADY CONDUCTION IN IRREGULAR GEOMETRY
5 4.01Е+02 6 4.01Е+02 7 4.01Е+02 ITER Т(2,12) 8 4.01E+02 9 4.01E+02 10 4.01E+02 3.73E+02 4.56E+02 -7.483E+03 3.73E+02 4.56E+02 -7.483E+03 3.73E+02 4.56E+02 -7.483E+03 Т(5,4) Т(10,12) HEAT FLOW (BOTTOM FACE) 3.73E+02 4.56E+02 -7.482E+03 3.73E+02 4.56E+02 -7.482E+03 3.73E+02 4.56E+02 -7.482E+03
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 [ 43 ] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |